Gabe C. answered 04/08/20
"It's Trivial" -Gabe
limn→∞{(4n-C(2n+1,n))/(4n)}
=limn→∞{1-(C(2n+1,n))/(4n)}
=limn→∞{1-(((2n+1)/(n+1))C(2n,n))/(4n)}
=1- limn→∞{(((2n+1)/(n+1))C(2n,n))/(4n)}
By asymptotics we know limn→∞((2n+1)/(n+1))C(2n,n))/4n ≤ limn→∞ (4n√(2n+1)/(n+1))/4n
an necessarily, 0 ≤ limn→∞((2n+1)/(n+1))C(2n,n))/4n
Evaluating limn→∞ (4n√(2n+1)/(n+1))/4n yields,
limn→∞ (4n√(2n+1)/(n+1))/4n
=limn→∞√(2n+1)/(n+1) (note: the denominator will out grow the numerator)
= 0
this gives us,
0 ≤ limn→∞((2n+1)/(n+1))C(2n,n))/4n ≤ limn→∞ (4n√(2n+1)/(n+1))/4n
0 ≤ limn→∞((2n+1)/(n+1))C(2n,n))/4n ≤ 0
and by squeeze theorem, limn→∞((2n+1)/(n+1))C(2n,n))/4n=0
And finally we can see that,
1- limn→∞{(((2n+1)/(n+1))C(2n,n))/(4n)}
=1- 0
=0
Thus we have shown,
limn→∞{(4n-C(2n+1,n))/(4n)} = 1. Q.E.D