Sindhuja R. answered 04/07/20
Experienced Tutor specializing in Geometry
GIVEN: f(x) = ax + b , f(1) = 6 and f(2)=10.
SOLUTION: f (1) = 6 ------------> A
f (x) = a x + b ----------->B
substitute x=1, we get f (1) = a(1)+b
6 = a + b [from equation ----->A, f(1)=6]
So, a + b = 6 ---------->1
f (1) = 6 ------------> C
f (x) = a x + b ----------->D
substitute x=2, we get f (2) = a(2)+b
10 = 2a + b [from equation ----->C, f(2)=10]
So, 2a + b = 10 ---------->2
Now, solving equations ----> 1 and 2, we get
a + b = 6 ------------->1
2a + b = 10 ------------>2
_-__-___-____ [By subtracting equation 1 from 2]
- a +0 = - 4
a = 4 -----------> 3
substitute equation 3 in -------->1
we get, a + b = 6
4 + b = 6
b = 6 - 4
b = 2
ANSWER :- Hence, a = 4 and b = 2
You can message me for detailed explanation of topic or any doubts.