Touba M. answered 03/09/20
B.S. in Pure Math with 20+ Years Teaching/Tutoring Experience
Hi Ana,
1) ∫x √(x-4) dx x - 4 = u then x = 4 + u then dx = du now back to your question
∫ ( 4 + u ) √u du
∫ (4 u1/2 + u * u1/2 ) du
∫ ( 4 u1/2 + u3/2 ) du now it is easy = 4 * 2/3 u3/2 + 2/5 u5/2+ c now plug in u = x - 4
1) = 8/3 (x -4)3/2 + 2/5 ( x - 4)5/2 +c
----------------------------------------------------
2) ∫(sin(5/x))/(x^2) dx 5/x = u then take a derivative of both side
-5/x2 dx = du both side divided by -5
dx/x2 = -du/5 back to your question∫
∫ -sin u du /5 = -1/5 ∫sinu du = -1/5 ( -cos u ) + c = 1/5 cos u now plug in u = 5/x
2) ∫(sin(5/x))/(x^2) dx = 1/5 cos 5/x + c
--------------------------------------------------------------------------
3) ∫tan^3(4x) sec^2(4x) dx it is much easy, only you need to remember tan'(u ) = u' sec^2 (u)
tan'(4x) = 4 sec^2(4x)
tan(4x ) = u
4 sec^2(4x) dx = du both side divided by 4
sec^2(4x) dx = 1/4 du
3) ∫tan^3(4x) sec^2(4x) dx = 1/4∫ u3 du = 1/4 * 1/4 u^4 + c = 1/4 * 1/4 tan4(4x) + c = 1/16 tan4(4x) + c
I hope it is useful,
Minoo