(CLOSED) Chisom A. answered 03/10/20
Calculus Pro
dp/dt = p(1 - p)[α(1 - p) - βp] = αp(1 - p)2 – βp2(1 - p) … (i)
For general equilibrium,
d/dt(dp/dt) = d2p/dt2 = p*(1 - p)*d/dt{[α(1 - p) - βp]} + p[α(1 - p) - βp]*d/dt(1 - p) + (1 - p)[α(1 – p) - βp]*(dp/dt)
Substitute for dp/dt from equation (i),
d2p/dt2 = p(1 - p)[α(-1) - β] + p[α(1 - p) - βp]*(-1) + (1 - p)[α(1 - p) - βp]*p(1 - p)[α(1 - p) - βp]
d2p/dt2 = p(1 - p)(-α - β) - p[α(1 - p) - βp] + p(1 - p)2[α(1 - p) - βp]2 … (ii)
but, for equilibrium condition, p’(t) = dp/dt = 0, then,
p(1 - p)[α(1 - p) - βp] = 0
p = 0; 1 – p = 0; α(1 - p) - βp = 0
α(1 - p) = βp
α – αp = βp
α = (α + β)*p
p = 0; p = 1; p = α/(α + β). These are all the conditions for equilibria!
Case 1:
Substitute p = 0 into the second rate of change, equation (ii),
d2p/dt2 = (0)(1 - 0)(-α – β) – (0)[α(1 - 0) - β(0)] + (0)(1 – 0)2[α(1 - 0) - β(0)]2
d2p/dt2 = 0 (Neutral equilibrium/stability)
Case 2:
Substitute p = 1 into second derivative, equation (ii),
d2p/dt2 = (1)(1 – 1)(-α – β) – (1) [α(1 - 1) - β(1)] + (1)(1 – 1)2[α(1 - 1) - β(1)]2
= (1)(0)(-α – β) – [α(0) – β] + (1)(0)2[α(0) – β]2
d2p/dt2 = β > 0 (stable equilibrium)
Case 3:
Substitute p = α/(α + β) into second derivative, equation (ii),
d2p/dt2 = [α/(α + β)]*[1 – α/(α + β)]*(-α – β) – [α/(α + β)]*{α[1 – α/(α + β)] – β[1 – α/(α + β)]} + [α/(α + β)]*[1 – α/(α + β)]2*{α[1 – α/(α + β)] – β[1 – α/(α + β)]}2
= [α/(α + β)]*[β/(α + β)]*[-(α + β)] - [α/(α + β)]*[αβ/(α + β) - αβ/(α + β)] + [α/(α + β)]* [β/(α + β)]2*[αβ/(α + β) - αβ/(α + β)]
d2p/dt2 = -αβ/(α + β) < 0 (unstable equilibrium)