
Patrick B. answered 03/01/20
Math and computer tutor/teacher
IBP #1
integral [ e^x sin x ]
u = e^x dv = sin x
du = e^x v = -cos x
- e^x * cos x + integral [ -cos x * e^x ]
IBP #2
U = e^x dv = -cos x
du = e^x V = sin x
- e^x * cos x + sin x * e^x - integral [ sin x * e^x]
So the ORIGINAL integral is equal to itself PLUS some other functions:
In summary
integral [ e^x sin x ] = - e^x * cos x + sin x * e^x - integral [ sin x * e^x]
moving the integral on the right side to the left side,
2 * integral [ e^x sin x] = - e^x * cos x + sin x * e^x
integral [ e^x sin x] = [sin x e^x - e^x cos x]/2 = (1/2) e^x (sin x - cosx)
Check by differentiation:
(1/2) [ e^x( cos x + sinx) + e^x ( sin x - cos x) ]
(1/2) e^x ( cos x + sin x + sin x - cos x )
(1/2) e^x (2 sin x)
e^x sin x
THerefore, the anti-derivative in bold above is correct