
Howard J. answered 12/02/19
Principal Mechanical Engineer with >30 years' math coaching experience
- Let f(x,y)=x2+y2+8x-12y+13
- Find fx(x,y)
- find fy(x,y)
- find fxx(x,y)
- find fyy(x,y)
- find fxy(x,y)
- Use parts (a) and (b) to find the critical point of f.
- Determine whether the critical point is a local maximum, a local minimum, or a saddle point. Use the Second Derivative test for Functions of Two Variables to find your answer. Show your work
a) fx(x,y)=(x2+y2+8x-12y+13)x=2x+8
b) fy(x,y)=(x2+y2+8x-12y+13)y=2y-12
c) fxx(x,y)=(2x+8)x=2
d) fyy(x,y)=(2y-12)y=2
e) fxy(x,y)=(2y-12)x=0
f) fx(x,y)=fy(x,y)=0=2x+8=2y-12
critical point (-4,6)
g) D(-4,6)=fxx(-4,6)fyy(-4,6)-[fxy(-4,6)]2=(2)(2)-(0)2=4
Since D>0 and fxx(-4,6)>0, f(-4,6) is a local minimum