Michael L. answered 01/31/16
Tutor
New to Wyzant
Intuitively explains the concepts in Math and Science
Hello Dalia,
I saw two of this problems posted, and thought to investigate. I hope I interpret the fractions and parenthesis correct, otherwise, let me know.
g(x) = ∫ [(u+4)/(u-5)]du with upper bound 3x and lower bound 9x
g(x) = ∫[u/(u - 5)]du + 4∫[1/(u - 5)]du
The second integral is ∫[1/(u - 5)]du = ln(u - 5)
For the first integral let y = u - 5 or u = y+ 5 and du = dy
∫[u/(u - 5)]du = ∫[(y + 5)/y]dy
= ∫(1 + 5/y)dy
= y + 5ln(y)
= (u - 5) + 5ln(u - 5)
Combining the two integrals
g(x) = (first integral) + 4(second integral)
=(u -5) + 5ln(u-5) + 4ln(u - 5)
g(x) = u - 5 + 9ln(u - 5) evaluate this at 3x and 9x
g(x) = [3x-5 + 9ln(3x -5)] - [9x - 5 +9ln(9x-5)]
= 3x - 5 + 9ln(3x - 5) - 9x + 5 - 9ln(9x-5)
g(x) = 9[ln(3x -5) -ln(9x - 5)] - 6x
g'(x) = 9[(1/(3x-5))*3 - (1/(9x -5))*9] - 6
= 27[1/(3x - 5) - 3/(9x - 5)] -6
g'(x) = 270/[(3x - 5)(9x - 5)] - 6