
Yefim S. answered 11/18/19
Math Tutor with Experience
x = rcosφ; y = rsinφ;
region R: 0≤r≤5, 0≤φ≤π/2
dA = dxdy = rdrdφ∫
I = ∫∫yexdA = ∫∫rsinφercosφrdrdφ = -⌊∫rdrercosφ⌊π/20= -∫r(ercosπ/2- ercos0)dr = ∫r(er -1)dr from 0 to 5'
Integration by parts: u = r, du = dr and dv = (er -1)dr v = er- r
I = r(er - r) - ∫(er - r)dr = r(er - r) - er + r2/2 with substitution from 0 to 5
I = 5(e5 -5) - e5 +25/2 +1 = 4e5 -11.5