Mark M. answered 11/14/19
Retired college math professor. Extensive tutoring experience.
Let A = (-1,2), B = (-10,5), and C = (-4,k)
Slope AB = (5-2) / (-10-(-1)) = -1/3
Slope AC = (k+1) / (-4-2) = (k+1) / (-6)
Slope BC = (k-5) / (-4-(-10)) = (k-5) / 6
If the angle with vertex B is a right angle, then (k-5) / 6 = 3. So, k = 23.
If the angle with vertex A is a right angle, then (k+1) / (-6) = 3. So, k = -19.
If the angle with vertex C is a right angle, then (k+1) / (-6) = -6 / (k-5).
So, (k+1)(k-5) = 36
k2 - 4k - 41 = 0
k = [4 ± √180] / 2
The possible values of k are 23, -19, (4+√180) / 2, and (4-√180)/2.