Pete R. answered 10/29/19
Math Tutor/Mentor
Hi Alyssa
Linear systems with 3 variables
3x + y - 4z = -222x + 3y + 4z = 32x - y + 2z = 16
Write and number each equation.
Eq 1 3x+y-4z = 16
Eq 2 -222x+3y+4z = 16
Eq 3 32x-y+2z = 16
Eliminate one variable by adding equations 1, 3. Number the result Eq 4
Eq 1 3x+y-4z=16
Eq 2 + 32x-y+2z=16
---------------------
Eq 4 35x-2z= 32
Eliminate the same variable using equations 1, 2. You shall have to multiply Eq 1
by -3 to eliminate the same variable y; number this result equation 5. Now add Eq 2, Eq5, number the result Eq 6.
Eq 1 3x+y-4z=16 (-3) Eq 5 -9x-3y+12z=-48
Eq 2 -222x+3y+4z = 16 Eq 2 -222x+3y+4z = 16
--------------------------------
Eq 6 -231x+16z=-32
We now have two equations with 2 variables; Eq 4, 6, we shall now eliminate one variable by multiplying Eq 4 by 8, then adding Eq 4, 6.
Eq 4 35x-2z= 32 (8) 280x-16z = 256 x = 224/49
Eq 6 -231x+16z=-32 -231x+16z= -32
--------------------
49x = 224
We use the value of x in equation 4 to calculate the value of z
Eq 4 35x-2z= 32 35(224/49) – 2 z = 32 7840/49- 2 z = 32 -2z = -7840/49 + 32
-2z = -160 + 32 z = (-128/-2) z = 64
We now use Eq 1 to calculate the value of y
Eq 1 3x+y-4z = 16 3(224/49)+y-4(64) = 16 672/49+y-256 = 16 y = 256 + 16 -672/49
y = 272 – 672/49 y = (13328 -672)/49 y= 12656/49
Both x, y are improper fractions that cannot be simplified, but verification shows they are indeed correct (you should always verify your answers)
Verification
3x + y - 4z = -222x + 3y + 4z = 32x - y + 2z = 16
3(224/49)+12656/49–4(64) = -222(224/49) + 3(12656/49)+4(64)=32(224/49)-12656+2(64)=16
(672+12656)/49-256 = (-49728+37968)/49+256 = 7168/49-12656/49+128 =16
13328/49-256 = -11760/49+256 =-5488/49+128 = 16
272-256 = -240+256 = -112+128=16
Sincerely Pete