The distance, D, from a point (m.n) and a line Ax+By+C=0 is given by:
D
The distance between any two points (x1,y1) and (x2,y2) points is
√[(x2-x1)2+(y2-y1)2]
In this case (x,y)=(x,2x)=(x1,y1) is P and (x2,y2)=(3,0).
So
D=√[(3-x)2+(0-2x)2]=√[(3-x)2+4x2]
=√[9-6x+x2+4x2]=
=√[5x2-6x+9]
Now dD/dt=(1/2)(5x2-6x+9)-1/2(10x-6)dx/dt
=[1/((5x2-6x+9)1/2](5x-3)dx/dt=[(5x-3)/(5x2-6x+9)1/2](dx/dt)
We know dx/dt = -2 units/sec, and, if we substitute x = 3
dD/dt=(-2)(15-3)/[5(9)-18+9]1/2=-2(12)/√(45-18+9)=-24/√36=-24/√[(4)(9)]=-24/6=-4 units/sec
Solution: Dd/dt=-4 units/sec