I would use the
limh->0(f(x+h)-f(x))/h definition of the derivative
S'(x)=limh->0(S(x+h)-S(x))/h
=limh->0((f(x+h)+g(x+h))-(f(x)+g(x)))/h
Distribute the negative
=limh->0(f(x+h)+g(x+h)-f(x)-g(x))/h
group f and g terms together and split into two fractions
=limh->0((f(x+h)-f(x))/h+(g(x+h)-g(x))/h)
Split into two limits
=limh->0(f(x+h)-f(x))/h+limh->0(g(x+h)-g(x))/h
S'(x)=f'(x)+g'(x)