Start with equation y''(x) = f(x) = 6y/(10x-x2) about point xo = 5
Then,
y(x) = ao + a1(x-5) + a2(x-5)2 + a3(x-5)3 + a4(x-5)4................
by inspection
y(5) = ao and y'(5) = a1
then,
y''(5) = 6ao/(50-25) = 6ao/25 y'''(x) = 6y'/(10x-x2) - 6y(10-2x)/(10x-x2)2
then,
y'''(5) = 6a1/25 - 0 = 6a1/25
y''''(x) = 6y''/(10x-x2) -12y'(10-2x)/(10x-x2)2 + 12y/(10x-x2)2 + 12y(10-2x)2/(10x-x2)3
then
y''''(5) = (6/25)(6ao/25) + 0 + 12ao/625 + 0 = 48ao/625
So,
y(x) = f(x) = f(5) + f'(5)(x-5) + f''(5)(x-5)2/2! + f'''(5)(x-5)3/3! + f''''(5)(x-5)4/4! .........
or
y(x) = f(x) = ao + a1(x-5) + (6ao/25)(x-5)2/2! + (6a1/25)(x-5)3/3! + (48ao/625)(x-5)4/4!...
or
y(x) = f(x) = ao + a1(x-5) + (3ao/25)(x-5)2 + (a1/25)(x-5)3 + (2ao/625)(x-5)4.....
Very tedious.... hopefully no adding errors!