(y')2 + (x + 2y) cos(x + y) = (x + 2y + cos(x + y)) y'
⇒ (y')2 + (x + 2y) cos(x + y) = (x + 2y) y' + cos(x + y) y'
⇒ (y')2 - cos(x + y) y' = (x + 2y) y' - (x + 2y) cos(x + y)
⇒ y' [y' - cos(x + y)] = (x + 2y) [y' - cos(x + y)]
⇒ (y' - x - 2y) [y' - cos(x + y)] = 0
y' - x - 2y = 0 ----------(1) or
y' - cos(x + y) = 0 ----------(2)
From (1) we get: y' - 2y = x
Let, the integration factor μ(x) = e∫-2 dx = e-2x
Multiplying both sides by μ(x):
e-2x(y') - 2e-2x(y) = e-2x(x) --------(3)
Let, e-2x(y) = z
∴ z' = e-2x(y') - 2e-2x(y)
So, equation (3) becomes:
z' = e-2x(x)
⇒ dz/dx = e-2x(x)
⇒ z = ∫e-2x(x) dx + C1
⇒ z = -(1/4)e-2x(2x + 1) + C1 [integrating by parts]
⇒ e-2x(y) = -(1/4)e-2x(2x + 1) + C1
⇒ y = C1e2x - x/2 - 1/4
From (2) we get:
y' = cos(x + y) --------(4)
Let, z = x + y
∴ z' = y' + 1
So, equation (4) becomes:
z' - 1= cos(z)
⇒ dz/dx = 1 + cos(z)
⇒ ∫dz/(cos(z) + 1) = x + C2
⇒ tan(z/2) = x + C2 [integrating by substituting tan(z/2) with some arbitrary variable u]
⇒ z = 2 tan-1(x + C2)
⇒ x + y = 2 tan-1(x + C2)
⇒ y = 2 tan-1(x + C2) - x
y = C1e2x - x/2 - 1/4
or
y = 2 tan-1(x + C2) - x