Shailesh K. answered 07/04/19
MS in Electrical Engineering with 8+ years of teaching experience
Given equation : dx/(x^2+y^2) = dy/(2xy): Solution y = 1/(2e^C1) [1± (4e^(2C1)x^2+1) ^½]
Steps:
1. Divide by dx: 1/(x^2+y^2) = (dy/dx)/(2xy)
2. Rewrite dy/dx = y’: 1/(x^2+y^2) = y’/(2xy)
3. Isolate y’: y’ = 2xy/(x^2+y^2)
4. Substitute y =vx: (vx)’ = 2xvx/(x^2+(vx)^2)
5. Simplify: (vx)’ = 2v/(1+v^2)
6. Differentiate left side:: xv’+ v = 2v/(1+v^2)
7. Rewrite first order ODE: [(1+v^2)/(v-v^3)]v’ = 1/x
8. Solve by integrating both sides: lnv – ln(v+1) – ln(v-1) = lnx +C1
9. Isolate v: v = 1/(2xe^C1) [1± (4e^(2C1)x^2+1) ^½]
10. Change v to y, v=y/x: y = 1/(2e^C1) [1± (4e^(2C1)x^2+1) ^½]
There is no solution for dy/(2xy) = dz/(x+y)^2
Cheers! Happy July 4th
Shailesh K.
07/04/19