Patrick B. answered 05/01/19
Math and computer tutor/teacher
integrates by parts:
U = cos(5x) and dV = exp(2x)
dU = -5(sin(5x)) and V = (1/2)exp(2x)
UV - integral ( V*dU) =
(1/2) * cos(5x)*exp(2x) + (5/2) * integral ( exp(2x) * sin(5x) )
Integrating by parts again in the same way:
U = sin(5x) and dV = exp(2x)
dU = 5*cos(5x) V = (1/2) exp(2x)
This gives the same integral as posed in the problem, as highlighted in bold above
(1/2) * cos(5x)*exp(2x) + (5/2) * [ (1/2) sin(5x)*exp(2x) - (5/2) integral ( cos(5x)*exp(2x))]
(1/2) * cos(5x) * exp(2x) + (5/4) * sin(5x)*exp(2x) - 25/4 * integral( cos(5x)*exp(2x)]
solving for the integral, the solution is:
(4/29) [ (1/2) * cos(5x) * exp(2x) + (5/4) * sin(5x)*exp(2x) ]
(2/29) cos(5x) * exp(2x) + (5/29) sin(5x)*exp(2x) =
exp(2x) [2*cos(5x) + 5*sin(5x)]/29