Michael K. answered 04/26/19
PhD professional for Math, Physics, and CS Tutoring and Martial Arts
Given f(x) = 1/(3x-2) with a center point (x0) = -6 we first start to compute some of the derivatives of the function and look for a pattern...
Taylor Theorem states --> f(x) = sum [ fk(x0)/k! * (x - x0)k ]
f(-6) = f0(-6) = 1/16
f1(x) = f'(x) = -1 * [ 1/(3x-2)2 ] * 3 = -3 * [ 1/(3x-2)2 ] = (-3)1 1! * [ 1/(3x-2)2 ]
f1(-6) = -3/162
f2(x) = f''(x) = -1 * -2 * [ 1/(3x-2)3 ] * 3 * 3 = 18 * [ 1/(3x-2)3 ] = (-3)2 2! * [ 1/(3x-2)3 ]
f2(-6) = 18/163
f3(x) =f'''(x) = -1 * -2 * -3 * [ 1/(3x-2)4 ] * 3 * 3 * 3 = -6 * 27 * [ 1/(3x-2)4 ] = (-3)3 3! * [ 1/(3x-2)4 ]
We now see the pattern and can write the full representation for the Taylor series...
f(x) = sum_[lb-->k=0]_[ub-->k=infinity] (-3)k k! * [ 1/(16)(k+1) ] / k! * (x + 6)k = (-3)k * [ 1/(16)(k+1) ] * (x + 6)k