The expectation value can be represented as the integral of function over the measure...
Here we represent the measure μ(x) = a weighting function
E(aX+b) = ∫[lb=-∞][ub=∞] (aX+b) dμ / ∫[lb=-∞][ub=∞] dμ
Now the denominator integral ∫[lb=-∞][ub=∞] dμ is the normalization factor. Looking at the numerator integral we can use the associativity of integrals to break this up...
∫[lb=-∞][ub=∞] (aX+b) dμ = ∫[lb=-∞][ub=∞] (aX) dμ + ∫[lb=-∞][ub=∞] b dμ
Since a and b are constants...
∫[lb=-∞][ub=∞] (aX) dμ + ∫[lb=-∞][ub=∞] b dμ = a * ∫[lb=-∞][ub=∞] Xdμ + b * ∫[lb=-∞][ub=∞] dμ
Placing back into the definition...
∫[lb=-∞][ub=∞] (aX+b) dμ = a * ∫[lb=-∞][ub=∞] Xdμ + b * ∫[lb=-∞][ub=∞] dμ
Here we define ∫[lb=-∞][ub=∞] Xdμ = normalization factor (see above) * E(X) [ the expectation of value X ]
E(aX+b) = a * ∫[lb=-∞][ub=∞] Xdμ + b * ∫[lb=-∞][ub=∞] dμ / ∫[lb=-∞][ub=∞] dμ
E(aX+b) = a * ∫[lb=-∞][ub=∞] Xdμ / ∫[lb=-∞][ub=∞] dμ + b * ∫[lb=-∞][ub=∞] dμ / ∫[lb=-∞][ub=∞] dμ
E(aX+b) = a * E(X) + b