Area of a rectangle=lw
Area of a semicircle=πr2/2
r=w/2
As=π(w/2)2/2=πw2/8
Perimeter of the window=2l+w+1/2C
C=2πr=2πw/2=πw
P=2l+w+πw/2
49=2l+w+πw/2
l=(49-w-πw/2)/2
Total Area:
A=lw+πw2/8
sub in for l so whole area is in terms of w
A=((49-w-πw/2)/2)(w)+πw2/8
A=49/2w-w2/2-πw2/4+πw2/8
A=49/2w-w2/2-πw2/8
Find dA/dw
dA/dw=49/2-w-πw/4
set equal to 0
0=49/2-w-πw/4
w(1+π/4)=49/2
w=49/(2+π/2)≈13.7
Do sign test to confirm max:
f'(10)=49/2-10-10π/4≈6.6
f'(15)=49/2-15-15π/4≈-2.3
Since f'(x) is positive to the left of 49/(2+π/2) and negative to the right x=49/(2+π/2) is a maximum.