
Zeeshan I. answered 04/12/19
Calc 1, 2 and 3 teacher for 2 years
Given function is f(x) = 2x3 - 9x2 - 108x + 7.
f(-6) = 2(-6)3 - 9(-6)2 - 108(-6) + 7 = -101
f(10) = 2(10)3 - 9(10)2 - 108(10) + 7 = 27
Mean slope = (f(10) - f(-6))/(10 - (-6)) = (27 - (-101))/(16) = 8
Differentiating f(x) with respect to x, we get
f'(x) = d/dx (2x3 - 9x2 - 108x + 7) = 6x2 - 18x - 108
Setting f'(c) = mean slope, we get
f'(c) = 8
6c2 - 18c - 108 = 8
3c2 - 9c - 58 = 0
3(c2 - 3c) - 58 = 0
3(c2 - 3c + 9/4 - 9/4) - 58 = 0
3(c2 - 3c + 9/4) - 27/4 - 58 = 0
3(c - 3/2)2 - 259/4 = 0
(c - 3/2)2 = 259/12
c = 3/2 ± √(259/12)
c = (3 ± √(259/3))/2
So, the smaller c is c1 = (3 - √(259/3))/2 ≈ -3.146
and the larger c is c2 = (3 + √(259/3))/2 ≈ 6.146
and -6 < c1 < c2 < 10.