I'll take a stab at this.....
First take the equation, & inputting 6438 in for F, and solving for x yields
x=16.937865718660782452279061849393 ppm
Next, find the derivative of F with respect to x
F= 78000/(8+√ x )
dF/dx=78000 * derivative of [ (8+√ x )^-1] = -39000 / (16x + √ x (x+64) )
Substituting x=16.937865718660782452279061849393 into this derivative yields
dF/dx = -39000 / [ 16 * 16.937865718660782452279061849393 + √16.937865718660782452279061849393 (16.937865718660782452279061849393+64) ]
= -39000 / [ 271.00585149857251923646498959029 + √16.937865718660782452279061849393 (80.937865718660782452279061849393} ]
= -39000 / [ 271.00585149857251923646498959029 + 333.10495341435788938421653040719 ]
= -39000 / 604.11080491293040862068151999748
= 64.55769319607023411371237458194 fish / year . This is the rate of decrease at the time when the fish is at 6438.