PROBLEM
Related Rates Question
A boat is pulled by means of a winch on a dock 8 ft above the deck of the boat. The winch pulls in the rope at the rate of 5 ft/s. Determine the speed of the boat when there is 10 ft of rope out.
SOLUTION
Winch O
| \
| \
| \
| \
| \
y = 8 ft | \ Rope = c = 10 ft
| \
Dock | \
-------------| x = 6 ft \ ___________ Boat
| \ /
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
Using Pythagorean Theorem, to find the length of the rope from the winch to the boat:
x2 + y2 = c2
Taking the derivative:
d/dt [x2 + y2 = c2]
2x(dx/dt) + 2y(dy/dt) = 2c(dc/dt)
When there is 10 ft of rope out, we know:
dc/dt = -5 ft/s (GIVEN)
c = 10 ft (GIVEN)
y = 8 ft (GIVEN)
x = 6 ft (Found using 3-4-5 Triangle or Pythagorean Theorem)
dy/dt = 0 (Height of winch does not change)
Substituting the values into 2x(dx/dt) + 2y(dy/dt) = 2c(dc/dt)
2•6(dx/dt) + 2•8(0) = 2•10(-5)
12(dx/dt) + 2•8(0) = -100
dx/dt = -100/12 = -25/3 ft/s
Therefore, the boat is moving a speed of 8.33 ft/s toward the dock.