Mark M. answered 08/29/18
Tutor
4.9
(954)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
(Assuming that n is an integer ≥ 2)
Use integration by parts:
∫cosnx dx = ∫cosn-1x cosx dx
Let u = cosn-1x dv = cosxdx
du = (n-1)cosn-2x(-sinx)dx v = ∫dv = sinx
So, ∫cosnx dx = uv - ∫vdu = cosn-1x sinx - ∫sinx(n-1)cosn-2x(-sinx)dx
= cosn-1x sinx + (n-1)∫cosn-2x sin2x dx
∫cosnxdx = cosn-1x sinx + (n-1)∫cosn-2x (1 - cos2x)dx
∫cosnxdx = cosn-1x sinx + (n-1)∫cosn-2x dx - (n-1)∫cosnx dx
Combining the terms that involve ∫cosnxdx, we have n∫cosn xdx = cosn-1x sinx + (n-1)∫cosn-2x dx
Divide both sides by n to obtain the desired formula.