Michael K. answered 04/28/19
PhD professional for Math, Physics, and CS Tutoring and Martial Arts
If w represents the complex cube root of unity then
w1 = 1
w2 = e2πi/3
w3 = e4πi/3
We see that w1 * w2 = w2, w1 * w3 = w3, w2 * w2 = w3, w2 * w3 = w1
This is due to the "circularity" of the solutions...
If these solutions we can choose A,B from this choice...
(1 + e2πi/3)7 = A + Be2πi/3
We make the replacement of 1 --> w1
(1 + e2πi/3)7 = (w1 + w2)(w1 + w2)(w1 + w2)(w1 + w2)(w1 + w2)(w1 + w2)(w1 + w2)
= (w1 + w2)(w1*w1 + 2w1*w2 + w2*w2)3
= (w1 + w2)(w1 + 2w2 + w3)3
= (w1 + w2)(w1 + 2w2 + w3)(w1 + 2w2 + w3)(w1 + 2w2 + w3)
= (w1 + w2)(w1 + 2w2 + w3)(w1*w1 + 4w1*w2 + 2w1*w3 + 4w2*w2 + 4w2*w3 + w3*w3)
= (w1 + w2)(w1 + 2w2 + w3)(5 + 5w2 + 6w3)
= (w1*w1 + 3w1*w2 + w1*w3 +2w2*w2 +w2*w3)(5 + 5w2 + 6w3)
= (2 + 3w2 + 3w3)(5 + 5w2 + 6w3)
= (10 + 10w2 + 12w3 + 15w2 + 15w2*w2 + 18w2*w3 + 15w3 + 15w2*w3 + 18w3*w3)
= (43 + 43w2 + 42w3)
Therefore --> ( 1 + w2 )7 = (43 + 43w2 + 42w3)
43 + 43w2 + 42w3 = A + Bw2
Doing the small for w3 yields -->
(1 + e4πi/3)7 = (w1 + w3)(w1 + w3)(w1 + w3)(w1 + w3)(w1 + w3)(w1 + w3)(w1 + w3)
= (w1 + w3)(w1 * w1 + 2w1 * w3 + w3 * w3)3
= (w1 + w3)(w1 + 2w3 + w2)3
= (w1 + w3)(w1 + 2w3 + w2)(w1 + 2w3 + w2)(w1 + 2w3 + w2)
= (w1 + w3)(w1 + 2w3 + w2)(w1*w1 + 4w1*w3 + 2w1*w2 + 4w3*w3 + 4w2*w3 + w2*w2)
= (w1 + w3)(w1 + 2w3 + w2)(5 + 5w3 + 6w2)
= (w1*w1 + 3w1*w3 + w1*w2 + 2w3*w3 + w2*w3)(5 + 5w3 + 6w2)
= (2 + 3w3 + 3w2)(5 + 5w3 + 6w2)
= (10 + 10w3 + 12w2 + 15w3 + 15w3*w3 + 18w2*w3 + 15w2 + 15w2*w3 + 18w2*w2)
= (43 + 43w3 + 42w2)
Therefore --> ( 1 + w3 )7 = (43 + 43w3 + 42w2)
43 + 43w3 + 42w2 = A + Bw3
We have two equations in two unknowns...
43 + 43w2 + 42w3 = A + Bw2
43 + 43w3 + 42w2 = A + Bw3
Subtracting both equations yields --> -w3 + w2 = B(w2 - w3)
We gives us B = 1
With B = 1 we solve for A
43 + 43w2 + 42w3 = A + w2
A = 43 + 42(w2 + w3)
Therefore the solution gives B as a real number and A as a complex number