
Bobosharif S. answered 04/05/18
Tutor
4.4
(32)
PhD in Math, MS's in Calulus
∫( 2x3+4x+√6 ) sin(5x) dx=
|u=2x3+4x+√6, du=(6x2+4)dx, dv=sin(5x) dx, v=-(1/5)cos(5x)|=
=-(1/5)(2x3+4x+√6)cos(5x)+(2/5)∫(3x2+2)cos(5x)dx=
=|u=3x2+2, du=6xdx, dv = cos(5x)dx, v=(1/5)sin(5x)|=
=-(1/5)(2x3+4x+√6)cos(5x)+(2/25)(3x2+2)sin(5x)dx-(12/25)∫x sin(5x)dx=
=|u=x, du=dx, dv = sin(5x)dx, v=-(1/5)cos(5x)|=
=-(1/5)(2x3+4x+√6)cos(5x)+(2/25)(3x2+2)sin(5x)dx+(12/125)xcos(5x)-(12/125)∫cos(5x)dx=
=-(1/5)(2x3+4x+√6)cos(5x)+(2/25)(3x2+2)sin(5x)dx+(12/125)xcos(5x)--(12/625)sin(5x)+C=
=-(1/125)(50x3+100x+25√6-12x)cos(5x)+(2/625)(75x2+50-6)sin(5x)+C=
=-(1/125)(50x3+88x+25√6)cos(5x)+(2/625)(75x2+44)sin(5x)+C.