
Bobosharif S. answered 03/19/18
Tutor
4.4
(32)
Advanced User of Windows
I. First method.
5 cos(θ) + 12 sin(θ) = 13 (divide by √(52+122)=13 )
(5/13)cos( θ)+(12/13) sin( θ)=1
Denote cos(β)=5/13, then sin(β)=12/13 and
cos(β)cos( θ)+sin(β) sin(θ)=1
cos(β-θ)=1
β-θ=π/2
θ=β-π/2
cos(θ)=cos(β-π/2)=cos(β)=5/13
cos(θ)=5/13.
II. Another approach
5cos(θ)+12sin(θ)=13
5cos(θ)+12√(1-cos2(θ))=13
122(1-cos2(θ)=(13-5cos(θ))2
122(1-cos2(θ)=132-130cos(θ)+25cos2(θ)
132cos2(θ)-130cos(θ)+25=0
(13cos(θ)-5)2=0
13cos(θ)=5
cos(θ)=5/13.
Note: There are many other ways as well.