Roman C. answered 12/12/17
Tutor
5.0
(868)
Masters of Education Graduate with Mathematics Expertise
sin(xyz)=x2y2 + z2 - 1
cos(xyz) (yz + xy ∂z/∂x) = 2xy2 + 2z ∂z/∂x
[xy cos(xyz) - 2z] ∂z/∂x = 2xy2 - yz cos xyz
∂z/∂x = [2xy2 - yz cos(xyz)]/[xy cos(xyz) - 2z]
By symmetry:
∂z/∂y = [2x2y - xz cos(xyz)]/[xy cos(xyz) - 2z]
(∂z/∂x)(1,1,0) = (∂z/∂y)(1,1,0) = 2
The tangent plane at (1,1,0) is:
z = 2x + 2y - 4