Your equation is ambiguous as written. I'm not sure if it's f(x) = 65 - x2 or f(x) = 65-x^2. I'll do both.
f(x) = 65 - x2
f'(x) = df(x)/dx = d(65)/dx - d(x2)/dx = -2x
f'(2) = -2(2) = -4
f(x) = 65-x^2
Rewrite as f(x) = eln(6^(5-x^2)) = e(5-x^2)·ln(6) [LOG PROPERTY: ln(ab) =b·ln(a)]
Apply the chain rule, letting u = 5-x2
f'(x) = df(x)/dx = df(u).du · du/dx
f'(x) = d(eln6·u)/du · d(5-x2)/dx
f'(x) = ln(6)eu · (-2x)
f'(x) = ln(6)e(5-x^2)·(-2x)
f'(2)( = -4·ln(6)·e
Use your calculator to get the answer.