
Satyom D.
asked 07/29/17if cosθ+cos∅=a and sinθ+sin∅=b than show that cos(θ+∅)= a²-b²/a²+b²
Plz help me to prove this...
More
1 Expert Answer

Andy C. answered 07/30/17
Tutor
4.9
(27)
Math/Physics Tutor
We need two identities as well as the sum to product and product to sum formulas.
The first identity is :
(cosX)^2 - (sinX)^2 = 1 - (sinX)^2 - (sinX)^2 = 1 - 2 * sinX^2 = 1 - 2sinX^2
The second comes from the product to sum formula:
(sinX)^2 = sinX*Sinx
= 1/2( cos( X-X) - cos(X +X))
= 1/2( cos(0) - cos2X)
= 1/2( 1 - cos2X)
I would recommend you research product to sum and sum to product formulas online.
Peruse them thoroughly as they are used without much warning in step 4 of the proof.
--------------------------------------------------------------------------------------------------
The identity is proven right to left. I will denote the angles as T and X.
(cos T + cos X)^2 - ( sin T + sin X)^2
-------------------------------------------- =
(cos T +cos X)^2 + ( sin T + sin X)^2
STEP 1: FOILing everything:
cosT^2 + 2cosTcosX + cos X^2 - sinT^2 - 2sinTsinX - sinX^2
--------------------------------------------------------------------------
cosT^2 + 2cosTcosX + cos X^2 + sinT^2 + 2sinTsinX + sinX^2
STEP 2:
Applying trig identity #1 from above to the cosine^2 - sine^2 terms in the numerator;
Also applying sin^2 + cos^2 = 1 to the applicable terms in the denominator:
2 cosT cosX - 2 sinT sinX + 1 - 2 sin T^2 + 1 - 2 sin X^2
-------------------------------------------------------------------
2 + 2cosT cos X + 2 sin T sin X
Step 3: the ONEs (1s) in the numerator combine.
A factor of 2 can be cancelled from everything
cos T cos X - sin T sin X +1 - sin T ^2 - sin X^2
-------------------------------------------------------
1 + cosT cos X + sin T sin X
Step 4: Applying the product to sum formulas to all of the
cosT cosX and sinT sinX:
cos ( T + X ) + 1 - sin T ^2 - sin X^2
-------------------------------------------
1 + cos ( T - X)
Step 5: Applying the second identity above to the sine^2 terms in
the numerator
cos (X + T) + 1 - 1/2 + cos 2T - 1/2 + cos 2X
-----------------------------------------------------
1 + cos ( T - X)
Step 6: the One cancels the halves
cos (X + T) + cos 2T + cos 2X
-----------------------------------------------------
1 + cos ( T - X)
-----------------------------------------------------
1 + cos ( T - X)
Step 7: Applying the sum to product formula to
the double angle cosine terms in the numerator
cos ( T + X) + 1/2* 2 cos( T + X) cos (T - X)
---------------------------------------------------
1 + cos (T - X)
Step 8: 1/2 * 2 cancels; cos (T + X) is factored out;
denominator cancels with the numerator after factoring
cos (T + X) [1 + cos (T-x)]
-------------------------------
1 + cos(T-x)
End of Proof
The tough part is getting the hang of the algebra behind the
product to sum and sum to product formulas,
This was a challenging problem. Thank you!
Satyom D.
Thanks...it will help me...
Report
08/01/17
Still looking for help? Get the right answer, fast.
Ask a question for free
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Find an Online Tutor Now
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Andy C.
07/29/17