Width = W

Length = 2W

Height = h

Volume = 2300 cm^{3} = L*W*h = 2W*W*h = 2W^{2}h

So h = 2300/2W^{2} = 1150/W^{2}

Area = 2*(W*h) + 2*(2W*h) + W*2W = 6900/W + 2W^{2} [Substituted 1150/W^{2} for h, L = 2W]

To find the minimum Area, take the derivative of the AREA wrt W, set it to zero, and solve for W:

d(Area)/dW = -6900W^{-2} + 4W

0 = -6900W^{-2} + 4W

6900/4 = W^{3}

1725 = W^{3}

**12 ≅ W** [11.993 rounded to 12]

**L = 2W = 24** [23.986 rounded to 24]

**h = 1150/W**^{2} = 8 [7.995 rounded to 8]

CHECK:

Volume = 12*24*8 = 2304 [Within rounding error]