csc2(x)
---------------
tan(x)+cot(x)
Identities:
csc(x) = 1/sin(x)
tan(x) = sin(x)/cos(x)
cot(x) = cos(x)/sin(x)
Let's plug these in so we're dealing only with sines and cosines:
1/sin2(x)
-------------------------------------
sin(x)/cos(x) + cos(x)/sin(x)
Put the terms in the denominator over a common denominator and add them:
1/sin2(x)
-------------------------------------
[sin2(x)+cos2(x)]/sin(x)cos(x)
Now sin2(x) + cos2(x) = 1
1/sin2(x) 1 sin(x)cos(x) cos(x)
---------------- = --------- * ---------------- = -------- = cot(x)
1/sin(x)cos(x) sin2(x) 1 sin(x)