A suit is on sale for $400 and is on sale for 20% off. You present a coupon at the register for an additional 30% off. Use the decay factors to determine the price you pay for the suit

I've never heard of a decay factor method. I looked it up and everything I saw seemed to relate it as a decay over a period of time, like the opposite of an exponential growth. I saw nothing related to a question like this. However, since what I saw seems to be essentially the proportion of what you'd have after you got done "decaying," the following method I know might be appropriate:

If we assume Emily is correct that $400 is the original price, you can do this as one percent which is sometimes taught in business math classes. It still uses the 80% and the 70%, but it's a way of finding one percent you can use rather than doing them one at a time.

You would take .80 x .70 = .56. (56%)

I know this as a "cost equivalent," because you pay the equivalent of 56% of the original price.

You can then just multiply 400 x .56.

(The nice thing about this method is that once you have the 56%, you can use it on any original cost without doing two multiplications.)