
Steve S. answered 04/03/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
Which of the following sequences diverge?
a) an=1/n
n → ∞ ==> 1/n → 0 ==> convergent
b) an=((-1)^(n+1))/n=((-1)^(n+1))*(1/n)
(-1)^(n+1) = {–1 if n even, +1 if n odd}
an = ±1/n → 0 as n → ∞ ==> convergent
c) an=(2^n)/(e^n)= (2/e)^n
2/e < 1, an → 0 as n → ∞ ==> convergent
d) an=(n^2)/(e^n)
n → ∞ ==> (n^2)/(e^n) → ∞/∞; use L’Hospital twice.
a) an=1/n
n → ∞ ==> 1/n → 0 ==> convergent
b) an=((-1)^(n+1))/n=((-1)^(n+1))*(1/n)
(-1)^(n+1) = {–1 if n even, +1 if n odd}
an = ±1/n → 0 as n → ∞ ==> convergent
c) an=(2^n)/(e^n)= (2/e)^n
2/e < 1, an → 0 as n → ∞ ==> convergent
d) an=(n^2)/(e^n)
n → ∞ ==> (n^2)/(e^n) → ∞/∞; use L’Hospital twice.
(n^2)/(e^n) → 2n/e^n → 2/e^n → 0 ==> convergent
e) an=n/ln(n); use L’Hospital
n/ln(n) → 1/(1/x) = x → ∞ ==> divergent.
Answer: E √
Sun K.
04/03/14