
Steve S. answered 03/31/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
Composition of Functions
Let f(x)=3x^2, g(x)=9x-2, m(x)=4x, and r(x)=sqrt(3x).
Find and simplify the composite function.
1) r(g(x))----> I got sqrt(27x-6)
sqrt(3(9x-2)) You’re right.
2) r(f(x))-----> I got 3x
sqrt(3(3x^2)) You’re right.
3) g(m(f(x)))---> I got 108x^2
9(4(3x^2))-2 You need to tack on a –2.
Are those right ?
--------------------------------------
Identify the function f(x)
4) h(x) = e^f(x) = e^sin(x) ——> I got sin(x) ??
Right.
5) k(x) = sin(f(x)) = sin(x^3 + 3x + 1)
It’s x^3 + 3x + 1.
6) m(x) = ln(f(x)) =ln(5+1/x)
It’s 5+1/x.
Let f(x)=3x^2, g(x)=9x-2, m(x)=4x, and r(x)=sqrt(3x).
Find and simplify the composite function.
1) r(g(x))----> I got sqrt(27x-6)
sqrt(3(9x-2)) You’re right.
2) r(f(x))-----> I got 3x
sqrt(3(3x^2)) You’re right.
3) g(m(f(x)))---> I got 108x^2
9(4(3x^2))-2 You need to tack on a –2.
Are those right ?
--------------------------------------
Identify the function f(x)
4) h(x) = e^f(x) = e^sin(x) ——> I got sin(x) ??
Right.
5) k(x) = sin(f(x)) = sin(x^3 + 3x + 1)
It’s x^3 + 3x + 1.
6) m(x) = ln(f(x)) =ln(5+1/x)
It’s 5+1/x.