
Steve S. answered 03/25/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
Find the average value of f(x) = √(64-x^2) on its domain.
I = integral{x1,x2}( f(x) dx)
The average value of f(x) is the height, h, of a rectangle with base x2-x1 whose area is I.
h = I/(x2-x1)
domain of f(x) is:
64-x^2 >= 0
64 >= x^2
8 >= |x|
-8 <= x <= 8
From precalculus we know that f(x) is the top semicircle of the circle x^2 + y^2 = 8^2. So its area is 1/2 pi 8^2 = 32 pi.
The average value of f(x) is then 32 pi/(8 – –8) = 2 pi.
We can also use a trig substitution to do the problem with calculus.
sin(θ) = x/8, cos(θ) = √(64-x^2)/8
x = 8 sin(θ), √(64-x^2) = 8 cos(θ)
dx = 8 cos(θ) dθ
-8 <= x <= 8 ==> -pi/2 <= θ <= pi/2
I = integral{-8,8}( √(64-x^2) dx)
I = integral{-pi/2,pi/2}( 8 cos(θ) 8 cos(θ) dθ)
I = 64 integral{-pi/2,pi/2}( cos^2(θ) dθ)
2 cos^2(θ) - 1 = cos(2θ)
cos^2(θ) = (1 + cos(2θ))/2
I = 64 integral{-pi/2,pi/2}( (1 + cos(2θ))/2 dθ)
I = 32 integral{-pi/2,pi/2}( (1 + cos(2θ)) dθ)
I = 32 [θ + sin(2θ)/2]{-pi/2,pi/2}
I = 32 [pi/2 + sin(pi)/2 - (-pi/2) - sin(-pi)/2]
I = 32 [pi/2 + pi/2] = 32 pi
The average value of f(x) is then 32 pi/(8 – –8) = 2 pi.
I = integral{x1,x2}( f(x) dx)
The average value of f(x) is the height, h, of a rectangle with base x2-x1 whose area is I.
h = I/(x2-x1)
domain of f(x) is:
64-x^2 >= 0
64 >= x^2
8 >= |x|
-8 <= x <= 8
From precalculus we know that f(x) is the top semicircle of the circle x^2 + y^2 = 8^2. So its area is 1/2 pi 8^2 = 32 pi.
The average value of f(x) is then 32 pi/(8 – –8) = 2 pi.
We can also use a trig substitution to do the problem with calculus.
sin(θ) = x/8, cos(θ) = √(64-x^2)/8
x = 8 sin(θ), √(64-x^2) = 8 cos(θ)
dx = 8 cos(θ) dθ
-8 <= x <= 8 ==> -pi/2 <= θ <= pi/2
I = integral{-8,8}( √(64-x^2) dx)
I = integral{-pi/2,pi/2}( 8 cos(θ) 8 cos(θ) dθ)
I = 64 integral{-pi/2,pi/2}( cos^2(θ) dθ)
2 cos^2(θ) - 1 = cos(2θ)
cos^2(θ) = (1 + cos(2θ))/2
I = 64 integral{-pi/2,pi/2}( (1 + cos(2θ))/2 dθ)
I = 32 integral{-pi/2,pi/2}( (1 + cos(2θ)) dθ)
I = 32 [θ + sin(2θ)/2]{-pi/2,pi/2}
I = 32 [pi/2 + sin(pi)/2 - (-pi/2) - sin(-pi)/2]
I = 32 [pi/2 + pi/2] = 32 pi
The average value of f(x) is then 32 pi/(8 – –8) = 2 pi.