Patrick D. answered 04/17/17
Tutor
5
(10)
Patrick the Math Doctor
1) sec y/cot y + tan y = 1/cos y*sin y/cos y + sin y/cos y = sin y /cos y^2 + sin y/cos y = (sin y+ sin y*cos y)/cos y^2 = sin y (1+cos y)/cos y^2
2) tany coty = 1, so tan y + cot y = sin y/cos y + cos y/sin y = (cos y^2 + sin y ^2 )/ (sin y cos y) = 1 /(sin y cos y)
3) (sin y + cos y ) (sec y + csc y ) = sin y sec y + sin y csc y + cos y sec y + cos y + csc y using FOIL
= tan y + 1 + 1 + cot y
= tan y + cot y + 2
= 2 + 1/(sin y cos y) <-- from previous exercise
= (2 sin y cos y + 1)/ (sin y cos y)
= (2 sin 2y + 1) / (sin y cos y)
4) tan y ( cos y - csc y) = tan y ( cos y - 1/sin y) = sin y/cos y ( cos y sin y - sin y)/siny
= (cos y sin y - sin y )/cos y
= sin y - tan y
5) IS EXACTLY THE SAME AS #3
6) (sin y - cos y) = sin y^2 - 2 sin y cos y + cos y ^2 = 1 - 2 sin y cos y = 1 - sin 2y
mnemonic device: "ALL STUDENTS TAKE CALCULUS"
1st quadrant: A --> all trig functions positive
2nd quadrant: S--> sine positive only
3rd quadrant: T --> tangent function positive only
4th quadrant: C --> cosine function positive only
9) tan 165 is in the 2nd quadrant where tangent is negative. This is 15 above the negative side of the x axis.
tan(180-15) = [tan(180)-tan(15)]/ [1 - tan(180)tan(15)] = [ 0 - tan(15)] / [1 + 0 * tan(15)] = -tan15 = -02679...
10) sin 225 is in the 3rd quadrant where sine is negative
It is 45 degrees below the negative side of the x axis.
sine (225) = sin(180 + 45) = sin(180)cos(45) + cos(180)sin(45)
= 0 * cos(45) + -1(sin(45) =
-sin(45) = -rad2/2 where rad2 = square-root(2)
12) cos(165) is in the second quadrant where cosine is negative.
It is 15 degrees above the negative x-axis
cos(165) = cos(180-15) = cos(180)cos(15) - sin(180)sin(15)
-1 cos(15 - 0 * sin(15)
= -cos(15) = -.9659258262891