
Katie B. answered 04/13/17
Tutor
5.0
(91)
Patient and knowledgeable Chemistry, Math, Science, English tutor
Let's tackle each set of parentheses separately first.
(sin a • cos b - cos a • sin b)2 = (sin a • cos b - cos a • sin b)(sin a • cos b - cos a • sin b)
= sin2a • cos2b - sin a cos a • sin b cos b - sin a cos a • sin b cos b + cos2a • sin2b
= sin2 a • cos2 b - 2 (sin a cos a • sin b cos b) + cos2a • sin2b
Other parentheses:
(cos a cos b + sin a sin b)2 = (cos a cos b + sin a sin b)(cos a cos b + sin a sin b)
= cos2a • cos2 b + sin a cos a • sin b cos b + sin a cos a • sin b cos b + sin2a • sin2b
= cos2a • cos2b + 2 (sin a cos a • sin b cos b) + sin2 a • sin2 b
Comparing both sets, we see the - 2 (sin a cos a • sin b cos b) will cancel out the + 2 (sin a cos a • sin b cos b) when added. So, we can omit that. We get:
sin2a • cos2 b + cos2 a • sin2 b + cos2 a • cos2 b + sin2 a • sin2 b
Let's factor out like terms. We get:
sin2 a (sin2 b + cos2 b) + cos2 a (sin2 b + cos2 b) = sin2 a + cos2 a = 1
(using the trigonometric identity that sin2 b + cos2 b = 1)
By the way (sin a • cos b - cos a • sin b)2 = sin (a-b)2 and (cos a cos b + sin a sin b)2 = cos (a-b)2
sin (a-b)2 + cos (a-b)2 = 1
Kenneth S.
04/13/17