
Steve S. answered 03/17/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
I = ∫e^(2x)/(1+e^x) dx
I = ∫(e^x/(1+e^x)) e^x dx
u = 1+e^x; e^x = u-1
du = e^x dx
I = ∫((u-1)/u) du
I = ∫(1-1/u) du
I = u - ln|u| + K
u = 1+e^x > 0
I = 1+e^x - ln(1+e^x) + K
C = K + 1
I = e^x - ln(1+e^x) + C
check:
dI/dx = e^x - (1/(1+e^x))(e^x)
= e^x(1+e^x)/(1+e^x) - e^x/(1+e^x)
= (e^x + e^(2x) - e^x)/(1+e^x)
= e^(2x)/(1+e^x) √
I = ∫(e^x/(1+e^x)) e^x dx
u = 1+e^x; e^x = u-1
du = e^x dx
I = ∫((u-1)/u) du
I = ∫(1-1/u) du
I = u - ln|u| + K
u = 1+e^x > 0
I = 1+e^x - ln(1+e^x) + K
C = K + 1
I = e^x - ln(1+e^x) + C
check:
dI/dx = e^x - (1/(1+e^x))(e^x)
= e^x(1+e^x)/(1+e^x) - e^x/(1+e^x)
= (e^x + e^(2x) - e^x)/(1+e^x)
= e^(2x)/(1+e^x) √