Write cos-1x = y or cos y = x.
Differentiate both sides of cos y = x to obtain
-sin y(dy/dx) = 1.
Divide both sides of -sin y(dy/dx) = 1 by -sin y
to yield dy/dx = (1/-sin y) or 1/[-√(1-cos2y)].
Replace y with cos-1x and cos y with x in
dy/dx = 1/[-√(1-cos2y)] to obtain
d(cos-1x)/dx = -1/[√(1-x2)]
As a general rule, d(cos-1u)/dx = -(du/dx)/[√(1-u2)]
For f(x) = cos-1(sin 2x), one then writes
d[cos-1(sin 2x)]/dx = -2cos (2x)/√(1- sin2(2x))
or -2cos (2x)/√(cos2(2x)) or -2cos (2x)/cos(2x) or -2.