
Steve S. answered 02/14/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
Find the integral of sqrt(4-x^2)dx from 0 to 2.
I = ∫{0,2}(sqrt(4-x^2))dx
Draw Right Triangle with sides 2, x, sqrt(4-x^2), and θ = arcsin(x / 2).
x = 2 sin(θ) and sqrt(4-x^2) = 2 cos(θ)
dx = 2 cos(θ) dθ
upper limit: θ = arcsin(2/2) = pi/2
lower limit: θ = arcsin(0/2) = 0
I = ∫{0,pi/2}(2 cos(θ))(2 cos(θ) dθ)
I = 4∫{0,pi/2} (cos^2(θ)) dθ
cos(2θ) = cos^2(θ) - sin^2(θ) = 2 cos^2(θ) - 1
cos^2(θ) = (1 + cos(2θ))/2
I = 4∫{0,pi/2} ((1 + cos(2θ))/2) dθ
I = 2∫{0,pi/2} (1 + cos(2θ)) dθ
I = 2 [θ + (sin(2θ))/2]{0,pi/2}
I = 2 [pi/2 + (sin(pi))/2 - 0 - (sin(0))/2]
I = pi
I = ∫{0,2}(sqrt(4-x^2))dx
Draw Right Triangle with sides 2, x, sqrt(4-x^2), and θ = arcsin(x / 2).
x = 2 sin(θ) and sqrt(4-x^2) = 2 cos(θ)
dx = 2 cos(θ) dθ
upper limit: θ = arcsin(2/2) = pi/2
lower limit: θ = arcsin(0/2) = 0
I = ∫{0,pi/2}(2 cos(θ))(2 cos(θ) dθ)
I = 4∫{0,pi/2} (cos^2(θ)) dθ
cos(2θ) = cos^2(θ) - sin^2(θ) = 2 cos^2(θ) - 1
cos^2(θ) = (1 + cos(2θ))/2
I = 4∫{0,pi/2} ((1 + cos(2θ))/2) dθ
I = 2∫{0,pi/2} (1 + cos(2θ)) dθ
I = 2 [θ + (sin(2θ))/2]{0,pi/2}
I = 2 [pi/2 + (sin(pi))/2 - 0 - (sin(0))/2]
I = pi