after state how many solutions there are and give a reason

please explain

thanks

Tutors, sign in to answer this question.

Parviz F. | Mathematics professor at Community CollegesMathematics professor at Community Colle...

Elimination Method:

- 2X + y = 4

3X + y =4

3X + 4Y = 5

-4(-2X- 4Y = 4 )

11 X = 5 -16 = -11

X = -11/ 11 = -1

Substitute X = -1 into 2nd equation

- 2( -1) + Y = 4

Y = 4 -2 =2

Substitution method

3X + 4Y = 5

-2X + Y = 4

Y = 2X +4 from 2nd equation:

3X + 4( 2X + 4) = 5

11X + 16 = 5

11X = -11 X = -1

Substitute in 2nd equation:

-2( -1) + Y = 4

Y = 2

To graph :

3X + 4Y = 5 3( 0) + 4Y = 5 Y intercept = 5/4 ( 0 , 5/4)

3 X + 4 (0 ) = 5 X intercept = 3/5 ( 3/5, 0)

Connect the 2 points together, and have the graph

- 2X + Y = 4 -2( 0) + Y = 4 ( 0 , 4 ) is Y intercept.

-2X + 0 = 4 (-2, 0 ) is X intercept

Connect 2 points and get the graph of the line

Observe that intersect point is :

( -1 ,2 )

3x+4y=5 => y = (5 - 3x)/4 = -3/4 x + 5/4

-2x+y=4 => y = (4 + 2x)/1 = 2 x + 4

The slopes are different, so the graphs will be two lines that intersect in one point, called the "solution" of the system of equations.

Solving by substitution:

y = -3/4 x + 5/4 = 2 x + 4

Multiply by 4:

-3 x + 5 = 8 x + 16

Add 3x-16 to both sides:

-11 = 11x

x = -1

y = 2 (-1) + 4 = 2

So the solution is (-1,2).

Solving by elimination:

3x+4y=5 => 3x+4y=5

-2x+y=4 => 8x-4y=-16

-2x+y=4 => 8x-4y=-16

11x = -11

x = -1

3x+4y=5 => 6x+8y=10

-2x+y=4 => -6x+3y=12

11y = 22

-2x+y=4 => -6x+3y=12

11y = 22

y = 2

So the solution, (-1,2), is the same as for substitution.

Solving using Cramer's Rule:

D = | 3 4 | = 3 - -8 = 11

| -2 1 |

D_x = | 5 4 | = 5-16 = -11

| 4 1 |

| 4 1 |

D_y = | 3 5 | = 12 - -10 = 22

| -2 4 |

| -2 4 |

x = D_x / D = -11/11 = -1

y = D_y / D = 22/11 = 2

So solution, as before, is (-1,2).

Solve by graphing:

One way is to convert each equation into Intercept Form:

ax + by = c => x/(c/a) + y/(c/b) = 1

where the intercepts are below their variable. Then graph the two intercepts and draw the line through them.

3x+4y=5 => x/(5/3)+y/(5/4)=1

-2x+y=4 => x/(4/-2)+y/(4/1)=1

-2x+y=4 => x/(4/-2)+y/(4/1)=1

See GeoGebra sketch here:

Hi Angelica;

3x+4y=5 and -2x+y=4

LINEAR COMBINATIONS

Both equations are linear combinations in that these are in the format of Ax+By, A and B are constants multiplying variables x and y.

3x+4y=5 is in Standard Formula...

Ax+By=C, neither A nor B equal zero and A is greater than zero.

-2x+y=4 is NOT in Standard Formula. A is less than zero. Let's fix that by multiplying both sides by -1...

(-1)(-2x+y)=(4)(-1)

2x-y=-4

SUBSTITUTION

3x+4y=5 and 2x-y=-4

Let's take either equation and isolate a variable. Obviously, it would be easiest to take the second equation and isolate y...

2x-y=-4

Let's subtract 2x from both sides...

2x-2x-y=-2x-4

-y=-2x-4

Let's multiply both sides by -1...

(-1)(-y)=(-1)(-2x-4)

y=2x+4

Let's take the first equation and substitute y with 2x+4...

3x+4y=5

3x+[(4)(2x+4)]=5

3x+8x+16=5

11x+16=5

Let's subtract 16 from both sides...

11x+16-16=5-16

11x=-11

Let's divide both sides by 11...

(11x)/11=-11/11

**x=-1**

Let's plug this into either equation to establish the value of y. I select the original second equation. It is easiest...

-2x+y=4

3x+4y=5 and -2x+y=4

LINEAR COMBINATIONS

Both equations are linear combinations in that these are in the format of Ax+By, A and B are constants multiplying variables x and y.

3x+4y=5 is in Standard Formula...

Ax+By=C, neither A nor B equal zero and A is greater than zero.

-2x+y=4 is NOT in Standard Formula. A is less than zero. Let's fix that by multiplying both sides by -1...

(-1)(-2x+y)=(4)(-1)

2x-y=-4

SUBSTITUTION

3x+4y=5 and 2x-y=-4

Let's take either equation and isolate a variable. Obviously, it would be easiest to take the second equation and isolate y...

2x-y=-4

Let's subtract 2x from both sides...

2x-2x-y=-2x-4

-y=-2x-4

Let's multiply both sides by -1...

(-1)(-y)=(-1)(-2x-4)

y=2x+4

Let's take the first equation and substitute y with 2x+4...

3x+4y=5

3x+[(4)(2x+4)]=5

3x+8x+16=5

11x+16=5

Let's subtract 16 from both sides...

11x+16-16=5-16

11x=-11

Let's divide both sides by 11...

(11x)/11=-11/11

Let's plug this into either equation to establish the value of y. I select the original second equation. It is easiest...

-2x+y=4

[(-2)(-1)]+y=4

2+y=4

Let's take both x and y results and plug these into the first equation for verification...

3x+4y=5

[(3)(-1)]+[(4)(2)]=5

-3+8=5

5=5

GRAPHING

I cannot do such here.

However,

3x+4y=5

2x-y=-4

The slope of each equation is -A/B...

3x+4y=5, -(3/4)=-3/4.

2x-y=-4, -(2/-1)=2

The y-intercept can be easily established as x=0...

3x+4y=5, 4y=5, y=5/4, y-intercept, (0,5/4)

2x-y=-4, -y=-4, y=4, y-intercept, (0,4)

When graphing, begin with the y-intercept. This is the point at which the line crosses the y-axis. For the first line, the line will increase 3 units as it runs to the left 4 units. For the second line, the line will increase 2 units as it runs to the right 1 unit. The two lines will insect at (-1,2).

ELIMINATION

This is another method you do not mention.

3x+4y=5 and -2x+y=4

To do this, either variable must have the same coefficient. Currently, x has the coefficients of 3 and -2, whereas y has the coefficient of 4 and 1.

Let's take the second equation.

-2x+y=4

Let's multiply both sides by 4.

On second thought, let's multiply both sides by -4 such that we convert this into Standard Formula...

(-4)(-2x+y)=(4)(-4)

8x-4y=-16

Let's add the two equations together and eliminate...

8x-4y=-16

+(3x+4y=5)

11x=-11

x=-1

SUBSTITUTION, GRAPHING AND ELIMINATION ARE ALL TECHNIQUES WHICH CAN BE USED TO SOLVE THIS.

Already have an account? Log in

By signing up, I agree to Wyzant’s terms of use and privacy policy.

Or

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Your Facebook email address is associated with a Wyzant tutor account. Please use a different email address to create a new student account.

Good news! It looks like you already have an account registered with the email address **you provided**.

It looks like this is your first time here. Welcome!

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Please try again, our system had a problem processing your request.

Scott A.

PhD Student in Biomedical Engineering at Johns Hopkins

$7.50 per 15 min

View Profile >

Nikia K.

Patient Teacher for Mathematics

$10.50 per 15 min

View Profile >

Soo T.

Stanford/Yale Double Masters Grad - Math/Stats/EE/GRE/GMAT/AP Tutoring

$10 per 15 min

View Profile >