after state how many solutions there are and give a reason

please explain

thanks

after state how many solutions there are and give a reason

please explain

thanks

Tutors, please sign in to answer this question.

Woodland Hills, CA

Elimination Method:

- 2X + y = 4

3X + y =4

3X + 4Y = 5

-4(-2X- 4Y = 4 )

11 X = 5 -16 = -11

X = -11/ 11 = -1

Substitute X = -1 into 2nd equation

- 2( -1) + Y = 4

Y = 4 -2 =2

Substitution method

3X + 4Y = 5

-2X + Y = 4

Y = 2X +4 from 2nd equation:

3X + 4( 2X + 4) = 5

11X + 16 = 5

11X = -11 X = -1

Substitute in 2nd equation:

-2( -1) + Y = 4

Y = 2

To graph :

3X + 4Y = 5 3( 0) + 4Y = 5 Y intercept = 5/4 ( 0 , 5/4)

3 X + 4 (0 ) = 5 X intercept = 3/5 ( 3/5, 0)

Connect the 2 points together, and have the graph

- 2X + Y = 4 -2( 0) + Y = 4 ( 0 , 4 ) is Y intercept.

-2X + 0 = 4 (-2, 0 ) is X intercept

Connect 2 points and get the graph of the line

Observe that intersect point is :

( -1 ,2 )

Westford, MA

3x+4y=5 => y = (5 - 3x)/4 = -3/4 x + 5/4

-2x+y=4 => y = (4 + 2x)/1 = 2 x + 4

The slopes are different, so the graphs will be two lines that intersect in one point, called the "solution" of the system of equations.

Solving by substitution:

y = -3/4 x + 5/4 = 2 x + 4

Multiply by 4:

-3 x + 5 = 8 x + 16

Add 3x-16 to both sides:

-11 = 11x

x = -1

y = 2 (-1) + 4 = 2

So the solution is (-1,2).

Solving by elimination:

3x+4y=5 => 3x+4y=5

-2x+y=4 => 8x-4y=-16

-2x+y=4 => 8x-4y=-16

11x = -11

x = -1

3x+4y=5 => 6x+8y=10

-2x+y=4 => -6x+3y=12

11y = 22

-2x+y=4 => -6x+3y=12

11y = 22

y = 2

So the solution, (-1,2), is the same as for substitution.

Solving using Cramer's Rule:

D = | 3 4 | = 3 - -8 = 11

| -2 1 |

D_x = | 5 4 | = 5-16 = -11

| 4 1 |

| 4 1 |

D_y = | 3 5 | = 12 - -10 = 22

| -2 4 |

| -2 4 |

x = D_x / D = -11/11 = -1

y = D_y / D = 22/11 = 2

So solution, as before, is (-1,2).

Solve by graphing:

One way is to convert each equation into Intercept Form:

ax + by = c => x/(c/a) + y/(c/b) = 1

where the intercepts are below their variable. Then graph the two intercepts and draw the line through them.

3x+4y=5 => x/(5/3)+y/(5/4)=1

-2x+y=4 => x/(4/-2)+y/(4/1)=1

-2x+y=4 => x/(4/-2)+y/(4/1)=1

See GeoGebra sketch here:

Middletown, CT

Hi Angelica;

3x+4y=5 and -2x+y=4

LINEAR COMBINATIONS

Both equations are linear combinations in that these are in the format of Ax+By, A and B are constants multiplying variables x and y.

3x+4y=5 is in Standard Formula...

Ax+By=C, neither A nor B equal zero and A is greater than zero.

-2x+y=4 is NOT in Standard Formula. A is less than zero. Let's fix that by multiplying both sides by -1...

(-1)(-2x+y)=(4)(-1)

2x-y=-4

SUBSTITUTION

3x+4y=5 and 2x-y=-4

Let's take either equation and isolate a variable. Obviously, it would be easiest to take the second equation and isolate y...

2x-y=-4

Let's subtract 2x from both sides...

2x-2x-y=-2x-4

-y=-2x-4

Let's multiply both sides by -1...

(-1)(-y)=(-1)(-2x-4)

y=2x+4

Let's take the first equation and substitute y with 2x+4...

3x+4y=5

3x+[(4)(2x+4)]=5

3x+8x+16=5

11x+16=5

Let's subtract 16 from both sides...

11x+16-16=5-16

11x=-11

Let's divide both sides by 11...

(11x)/11=-11/11

**x=-1**

Let's plug this into either equation to establish the value of y. I select the original second equation. It is easiest...

-2x+y=4

3x+4y=5 and -2x+y=4

LINEAR COMBINATIONS

Both equations are linear combinations in that these are in the format of Ax+By, A and B are constants multiplying variables x and y.

3x+4y=5 is in Standard Formula...

Ax+By=C, neither A nor B equal zero and A is greater than zero.

-2x+y=4 is NOT in Standard Formula. A is less than zero. Let's fix that by multiplying both sides by -1...

(-1)(-2x+y)=(4)(-1)

2x-y=-4

SUBSTITUTION

3x+4y=5 and 2x-y=-4

Let's take either equation and isolate a variable. Obviously, it would be easiest to take the second equation and isolate y...

2x-y=-4

Let's subtract 2x from both sides...

2x-2x-y=-2x-4

-y=-2x-4

Let's multiply both sides by -1...

(-1)(-y)=(-1)(-2x-4)

y=2x+4

Let's take the first equation and substitute y with 2x+4...

3x+4y=5

3x+[(4)(2x+4)]=5

3x+8x+16=5

11x+16=5

Let's subtract 16 from both sides...

11x+16-16=5-16

11x=-11

Let's divide both sides by 11...

(11x)/11=-11/11

Let's plug this into either equation to establish the value of y. I select the original second equation. It is easiest...

-2x+y=4

[(-2)(-1)]+y=4

2+y=4

Let's take both x and y results and plug these into the first equation for verification...

3x+4y=5

[(3)(-1)]+[(4)(2)]=5

-3+8=5

5=5

GRAPHING

I cannot do such here.

However,

3x+4y=5

2x-y=-4

The slope of each equation is -A/B...

3x+4y=5, -(3/4)=-3/4.

2x-y=-4, -(2/-1)=2

The y-intercept can be easily established as x=0...

3x+4y=5, 4y=5, y=5/4, y-intercept, (0,5/4)

2x-y=-4, -y=-4, y=4, y-intercept, (0,4)

When graphing, begin with the y-intercept. This is the point at which the line crosses the y-axis. For the first line, the line will increase 3 units as it runs to the left 4 units. For the second line, the line will increase 2 units as it runs to the right 1 unit. The two lines will insect at (-1,2).

ELIMINATION

This is another method you do not mention.

3x+4y=5 and -2x+y=4

To do this, either variable must have the same coefficient. Currently, x has the coefficients of 3 and -2, whereas y has the coefficient of 4 and 1.

Let's take the second equation.

-2x+y=4

Let's multiply both sides by 4.

On second thought, let's multiply both sides by -4 such that we convert this into Standard Formula...

(-4)(-2x+y)=(4)(-4)

8x-4y=-16

Let's add the two equations together and eliminate...

8x-4y=-16

+(3x+4y=5)

11x=-11

x=-1

SUBSTITUTION, GRAPHING AND ELIMINATION ARE ALL TECHNIQUES WHICH CAN BE USED TO SOLVE THIS.

Evan F.

Mathematics graduate looking to enhance your mathematics ability.

Cambria Heights, NY

4.9
(315 ratings)

John P.

Tutor of math and physics, recent college graduate

Short Hills, NJ

5.0
(21 ratings)

- Linear Equations 659
- Algebra 5026
- Word Problem 5060
- Math Help 5397
- Geometry 1877
- Linear System 7
- Math 9729
- Algebra 1 4035
- Algebra 2 3444
- Algebra Word Problem 2465