_{ }

A particle moves in the xy-plane so that its velocity vector at time t is v(t)=(t^2, sin(pi*t)) and the particle's position vector at time t=0 is (1, 0). Find the position vector of the particle when t=3?

Answer: (10, 2/pi)

Please show all your work.

Tutors, sign in to answer this question.

Morgan C. | Knowledgeable Math and Physics TutorKnowledgeable Math and Physics Tutor

A particle (or any moving object) has an instantaneous velocity given by the derivative of the position vector with respect to time. This means that we can then get the position vector from the velocity vector by taking the integral with respect to time._{
}

In this case, when we take the integral, x(t) = (1/3*t^3 + a, -cos(pi*t)/pi + b) where a and b are constants that are a result of doing an indefinite integral. We can find the values for a and b using the additional information given. we know that x(0) = (1,0). That means that 1/2*(0)^3 + a = 1 and so a = 1. That also means that -cos(pi*0)/pi + b = 0 and so b = cos(0)/pi = 1/pi.

Now we have all the information needed to find the position at t = 3. We know that x(t) = (1/3*t^3 +1, -cos(pi*t)/pi + 1/pi) so all we have to do is plug in t = 3. That would give us x(3) = (1/3*(3)^3 + 1, -cos(pi*3)/pi + 1/pi). Simplifying we get x(3) = (9+1,-(-1)/pi+1/pi). Thus you can see that the final answer will be x(3) = (10, 2/pi).

Already have an account? Log in

By signing up, I agree to Wyzant’s terms of use and privacy policy.

Or

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Your Facebook email address is associated with a Wyzant tutor account. Please use a different email address to create a new student account.

Good news! It looks like you already have an account registered with the email address **you provided**.

It looks like this is your first time here. Welcome!

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Please try again, our system had a problem processing your request.

Carla A.

Get help with Math! ACT and SAT prep, high school, and college!

$9.75 per 15 min

View Profile >

Brenda G.

Licensed Middle, High School teacher & CRLA certified Math Tutor

$12.50 per 15 min

View Profile >

Philip P.

Effective and Affordable Math Tutor

$11.25 per 15 min

View Profile >