The base of a solid is the region enclosed by the graph of y=e^-x, the coordinate axes, and the line x=3. If all plane cross sections perpendicular to the x-axis are squares, find its volume.

Answer: (1-e^-6)/2

Please show all your work.

The base of a solid is the region enclosed by the graph of y=e^-x, the coordinate axes, and the line x=3. If all plane cross sections perpendicular to the x-axis are squares, find its volume.

Answer: (1-e^-6)/2

Please show all your work.

Tutors, please sign in to answer this question.

New Wilmington, PA

Find the infinitesimal volume of one cross-sectional slice of thickness dx, width y=e^{-x}, and, since it is a square, height also e^{-x} :

dV = (e^{-x})(e^{-x}) dx = e^{-2x} dx

Integrate from 0 to 3 to find the total volume:

V =∫_{0}^{3} e^{-2x} dx = [-(1/2) e^{-2x}]_{0}^{3} = -(1/2) (e^{-6} - 1) = (1 - e^{-6})/2.

Sherwood, AR

The height is given by the equation y = e^{-x}. The area of a square is given by x ·y. Since the cross-sections are squares, the height and width will be the same. So the area of each individual square is (e^{-x})^{2} = e^{-2x}.

To find the volume, add up all the infinitely thin squares from x = 0 to x = 3. The equation looks like

Integrating, we get -(1/2) e^{-2x}. Now if we use the limits, -1/2 [ e^{-6} - e^{0}] = -1/2 [ e^{-6} -1] = +1/2[1 - e^{-6}]

Yang X.

Penn Triple Major - Finance / Excel / Chinese / Writing

Forest Hills, NY

5.0
(18 ratings)

John K.

Ardent Mathematics, Science, History, SAT and German Polymath

College Point, NY

5.0
(50 ratings)

Sean B.

Talented Math and SAT tutor for all

New York, NY

5.0
(18 ratings)

- Math 6771
- Math Word Problem 2815
- Math Help For College 1159
- Math Problem 735
- Math Equations 856
- Math Question 634
- Word Problem 3751
- Algebra 2 2689
- Algebra Help 868
- Algebra 3763

Find a tutor fast. Get the app.

Are you a tutor? Get the app for tutors

© 2005 - 2016 WyzAnt, Inc. - All Rights Reserved

## Comments