Mark M. answered 09/17/16
Tutor
4.9
(954)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
In class, you probably (hopefully!) learned that limx→0[sinx/x] = 1
(a). lxl = x if x > 0 lxl = -x if x < 0
To evaluate the given limit, consider the "one-sided" limits:
limx→0- [sinlxl/x] = limx→0- [sin(-x)/x]
= -limx→0- [sinx/x] (Recall: sin(-x) = -sinx)
= -1
limx→0+ [sinlxl/x] = limx→0+ [sinx/x] = 1
Since the one-sided limits are not the same, the given limit does not exist.
(b). limx→0 [sin3x/x2]
= (limx→0 [sinx/x])(limx→0 [sinx/x])(limx→0 [sinx]) = (1)(1)(0)
= 0