Mark M. answered 08/17/16
Tutor
4.9
(953)
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
If x>0, then limx→0[1/x - cotx] has the form ∞-∞
limx→0[1/x - cotx] = limx→0[(sinx - xcosx)/(xsinx)] (has form 0/0)
= limx→0[(cosx - cosx + xsinx)/(sinx + xcosx)] (by l'Hopital's Rule)
= limx→0[xsinx/(sinx + xcosx)] (still 0/0, so apply L'Hopital again)
= limx→0[(sinx + xcosx)/(cosx + cosx - xsinx)] = 0/2 = 0
For x<0, the given limit has the form -∞ + ∞. Proceeding as above, we again get 0 as the value of that limit.