Jamie L.
asked 07/30/16Prove Identity: cot(x)+1/cot(x)-1=1+tan(x)/1-tan(x)
Prove from one side to another using trig identities.
More
2 Answers By Expert Tutors
Adam S. answered 08/04/16
Tutor
0
(0)
Professional and Proficient Math Tutor
Proving this identity only requires one fact: cot(θ) = 1/(tan(θ)).
[cot(θ) + 1]/[cot(θ) - 1] = [1/tan(θ) + 1]/[1/tan(θ) - 1]
numerator: 1 + 1/tan(θ) = tan(θ)/tan(θ) + 1/tan(θ) =
[1 + tan(θ)]/tan(θ)
denominator: 1/tan(θ) - 1 = 1/tan(θ) - tan(θ)/tan(θ) =
[1- tan(θ)]/tan(θ)
[[1 + tan(θ)]/tan(θ)] / [[1- tan(θ)]/tan(θ)] =
[[1 + tan(θ)]/tan(θ)] * [tan(θ)/[1- tan(θ)]]
eliminating the tan(θ) in the numerator and denominator ->
[1 + tan(θ)]/[1- tan(θ)].
David F. answered 07/30/16
Tutor
5
(2)
Math Wiz from MIT
Hi Jamie,
You must be missing extra parentheses, otherwise the identity doesn't hold.
With the extra parentheses/braces:
[ cot(x)+1 ] / [ cot(x)-1 ]
recall that cot(x) = 1 / tan(x)
[ cot(x)+1 ] / [ cot(x)-1 ] = [ 1 / tan(x) + 1 ] / [ 1 / tan(x) - 1 ] =
[ 1 / tan(x) + tan(x) / tan(x) ] / [ 1 / tan(x) - tan(x) / tan(x) ] =
[ ( 1 + tan(x) ) / tan(x) ] / [ ( 1 - tan(x) ) / tan(x) ] =
[ ( 1 + tan(x) ) / tan(x) ] * [ tan(x) / ( 1 - tan(x) ) ] =
[ 1 + tan(x) ] / [ 1 - tan(x) ] Q.E.D.
Still looking for help? Get the right answer, fast.
Ask a question for free
Get a free answer to a quick problem.
Most questions answered within 4 hours.
OR
Find an Online Tutor Now
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.
Kenneth S.
07/30/16