
Thongminh N. answered 06/20/16
Tutor
4
(4)
Math can be fun, simple and straightforward!
Since we know both y and y' at the same instant of time t=0, we can solve for k using the equation y'=ky. The function y(t) can be derived by changing y' into dy/dt.
Solve for k:
y'=ky
13=k*12
k=13/12
k=13/12
Partially derive y(t):
y'=ky
dy/dt=ky
(1/y)dy=kdt
int((1/y)dy=int(kdt)
ln(y)=kt+c
y=exp(kt+c)
Solve for c:
y=exp(kt+c)
12=exp(k*0+c)
12=exp(c)
c=ln(12)
Fully derive y(t):
y=exp((13/12)t+ln(12))
y=12exp((13/12)*t)
y'=13exp((13/12)*t)
y and y' can be checked by substitution.