Rola M.

asked • 05/11/16

Show that {v1,v2,v3} is an orthonormal basis in R3 with the Euclidean inner product

Consider Vector:
 
v1= 1/sqrt(18)  [  4 ]  ,   v2= 1/3  [ 1 ] ,   v3= 1/sqrt(2)  [0],   w= [2]
                       [ -1 ]                    [ 2 ]                          [1]         [1]              
                       [  1 ]                    [-2 ]                          [1]         [-1]
 
or it can be written as v1= 1/sqrt(18) (4,-1,1),    v2= 1/3 (1,2,-2),   v3= 1/sqrt(2) (0,1,1),  w= (2,1,-1)
 
 
 1)  Show that {v1,v2,v3} is an orthonormal basis in R3 with the Euclidean inner product  
 
2) Find the coordinates of vector w in this basis      
 
 
 

2 Answers By Expert Tutors

By:

Hassan H. answered • 05/11/16

Tutor
5.0 (176)

Math Tutor (All Levels)

John R.

tutor
I agree with Hassan, but there is some redundancy in that, if the vectors are pairwise orthogonal (that is, have dot products of 0), then they will necessarily be independent.
Report

05/25/19

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.