
Steve S. answered 12/08/13
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
(3z-4)^(-1/3) - 5(3z-4)^(-4/3)=0
(3z-4)^(-1/3) - 5((3z-4)^(-1/3))^4=0
Factor out Greatest Common Factor of (3z-4)^(-1/3):
((3z-4)^(-1/3)) * ( 1 - 5((3z-4)^(-1/3))^3 ) = 0
Simplifying a little:
((3z-4)^(-1/3)) * ( 1 - 5/(3z-4)) = 0
Using Zero-Product Rule:
Case 1: (3z-4)^(-1/3) = 0 => 3z = 4 => z = 4/3
Case 2: 1 - 5/(3z-4) = 0 => 3z - 4 = 5 => z = 3
There are two answers: z = 4/3 and z = 3.
Check:
Case 1: (3(4/3)-4)^(-1/3) - 5(3(4/3)-4)^(-4/3) =? 0
(4 - 4)^(-1/3) - 5(4-4)^(-4/3) = 0 - 0 = 0 √
Case 2: (3(3)-4)^(-1/3) - 5(3(3)-4)^(-4/3) =? 0
5^(-1/3) - 5(5)^(-4/3) = 5^(-1/3) - 5^(3/3 - 4/3) = 5^(-1/3) - 5^(-1/3) = 0 √
5^(-1/3) - 5(5)^(-4/3) = 5^(-1/3) - 5^(3/3 - 4/3) = 5^(-1/3) - 5^(-1/3) = 0 √