Michael L. answered 02/07/16
Tutor
New to Wyzant
Intuitively explains the concepts in Math and Science
Hi Daniel,
∞
∑(i + 3)/i!
i=0
This is a factorial series the convergent test(s) to use for determining the convergence of the series is the ratio test
a= (i + 3)/i!
lim ai+1/ ai = lim [ ((i +1)+3)/ (i + 1)! ]/[(i + 3)/ i! ] = lim [(i +4)/ (i +1)!][ i!/(i + 3)] = lim [(i + 4)/ (i +1)(i + 3)] i-->∞ i-->∞ i-->∞ i-->∞
lim [(i +4)/(i2 + 4i + 3)] = lim [(1 +4/i)/(i+ 4+3/i)] = [ (1+0)/ (∞ + 4+0)]----> 0 i --->∞ i --->∞
∞
Since the limiting ratio of the series is less than 1, the series ∑(i + 3)/i! converges.
i=0
Since the limiting ratio of the series is less than 1, the series ∑(i + 3)/i! converges.
i=0
(i +4)
(i +4)
(i +4)